Topics in Higher Category Theory
Justin Noel / Georgios Raptis

SoSe 2016

Content / Literature / Recommended previous knowledge English
The purpose of this seminar is to study the general theory of higher categories and its applications. Higher category theory, especially the theory of $(\infty,n)$-categories, provides a powerful language for handling the complexity of encoding relations, relations between relations, and "so on". This language has been applied to questions in homotopy theory, derived algebra, derived algebraic geometry, topological field theory, and computer science. In addition to conceptualizing classical results by placing them in a more general context, they have proven essential for studying homotopy theories themselves. The exact subject matter of the seminar will be determined by the participants and their interests. In particular, participants are encouraged to speak about related topics arising in recent research papers. We also encourage participants to give talks on various foundational topics including, but not limited to, models for $(\infty,n)$-categories, presentable $\infty$-categories, higher topoi, stable $\infty$-categories, (higher) operad theory, derived schemes, (derived) stacks, the cobordism hypothesis, bicategories, higher Picard and Brauer groups...and beyond! Participants should have some familiarity with the theory of $\infty$-categories.

Zeit und Raum der Veranstaltung
Mo 16-18 M101

Art der Veranstaltung

Link zur Webseite (des/der Dozenten/in, der Veranstaltung)

Master, Doktoranden / PhD Students

Vortrag, schriftliche Ausarbeitung; je nach zutreffendem Modulkatalog ist der Vortrag eine Studienleistung. Giving a presentation, writing a detailed report; depending on the applicable Modulkatalogg the presentation is a Studienleistung

Termine und Dauer von Prüfung und erster Wiederholungsprüfung
Entf. / Does not apply

Anmeldeverfahren und Termine zu den Prüfungsbestandteilen
nach Vereinbarung / by appt.

Liste der Module
MSem, MV

BSem, MSem, LGySem: siehe Modulkatalog. MV und Nebenfach: 4,5 LP bei Studienbeginn ab WS 15/16, 6 LP bei Studienbeginn vor WS15/16