A surface embedding theorem

joint with Daniel Kasprzycki
Mark Powell
Peter Teichner
Q: Given a map of a surface in a 4-\text{mfld}, when is it homotopic to a (loc.-flat) embedding?

\[(u, u \cap \Sigma) \cong (\mathbb{R}^4, \mathbb{R}^2) \]

\[\text{homeo} \]

\[\Sigma \]

e.g., which elements of \(\pi_2(M^4) \) are rep. by embedded spheres?

- When does a knot in \(S^3 \) bound an embedded disc in \(B^4 \)?
Prototypical result: Disc embedding theorem

Let M^4 be a connected topological manifold, $\pi_1 M$ good.

$\Sigma = \cup \Sigma_i$: compact surface, each Σ_i simply connected

$$F: \Sigma \hookrightarrow M$$

is a generic immersion such that

- the algebraic intersection numbers of F vanish
- $F: \Sigma \hookrightarrow M$ framed, alg. dual spheres for F

Then F is (neg.) htpic rel ∂ to a loc. flat embedding \overline{F}

[with geom dual spheres \overline{G} s.t. $\overline{G} \simeq G.$] $\pi_1 \neq 1$

Powell-R-Teichner'20.
Generic immersions (loс. flāт):

- locally an embedding, intersections isolated double points \((2 + 2 = 4)\)

- any continuous map \(\Sigma^2 \rightarrow M^4\) is htpic to a gen. imm.

 \[\text{[FQ; see PRT'}^{20}\text{]}\]

 uses that any noncompact, connected 4-mfld is smoothable.

[Quinn]

Good groups

- abelian gps, finite gps, solvable gps, ...

- gps of snbexp growth

- closed under subgps, quotients, extensions, direct limits

- open whether all gps are good e.g. \(\mathbb{Z} \ast \mathbb{Z}\)?
Intersection numbers

\[\lambda(f,g) := \sum_{p \in f \cap g} \varepsilon(p) Y(p) \quad \in \mathbb{Z} [\pi_1 M] \]

well defined if \(f, g \) are rimp. connected (modulo whiskers)

\[\lambda(f,g) = 0 \iff \text{all points in } f \cap g \text{ are paired by gen. immersed discs, with (framed) disjoint, embedded boundaries} \]

Self-intersection number \(\mu(f) = 0 \iff \text{all pts in } f \cap f \text{ are paired by gen. coll. of 0-discs} \)

\(f, g \) are alg dual if \(\lambda(f,g) = 1 \iff \text{all but one pt in } f \cap g \text{ are so paired} \)

\(f, g \) are geom dual if \(f \cap g = 1 \text{pt} \)
The Whitney trick

$t = -2$

$t = 0$

$t = 3$

$\mathbb{R}^4 \cong \mathbb{R}^3 \times \text{time } t$
The Whitney trick

\[\text{A} \]

\[t = 0 \]

\[t = -2 \]

\[t = 3 \]
Disc embedding theorem

Casson, Freedman ’82, Freedman-Quinn ’90
Stong ’94, Kasprowski-Powell-R-Teichner

$\Sigma = \bigcup \Sigma_i$ compact surface, each Σ_i simply connected

$E = \bigcup E_i$ compact surface, each E_i $\pi_1 M$-good.

$F: \Sigma \rightarrow M$

$\Sigma \hookrightarrow \Sigma \rightarrow \partial M$

a generic immersion

such that • algebraic intersection numbers of F vanish

$E: \Sigma^2 \rightarrow M$ framed, alg. dual spheres for F

Then F is neg. htpic rel ∂ to a loc. flat embedding F

with geom dual spheres G^* s.t. $G \simeq G$.

if and only if the Kervaire-Milnor invariant

$km(F) \neq 7/2 \text{ vanishes}$
RHT is not slice i.e. A emb disc bounded by K.

Every $K \subseteq S^3$ bounds an emb. disc in $\# \mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$

given K, min m s.t. K null-hom slice in $m \mathbb{CP}^2$.

null-hom disc in $\# S^2 \times S^2$ iff $\operatorname{Arf}(K) = 0$.
Corollary 1: $F: \Sigma^2 \to M^4$ with $\pi_1 M$ good.

F' is the result of adding a trivial handle to F. Then F' is (reg) htpic to an embedding.

Corollary 2: $F: \Sigma^2 \to M^4$ with $\sim S^2$.

F is (reg) htpic to an embedding.

Corollary [FMNOPR]: $g_{2h}\left(\kappa\right) \leq 1$.
Intersection numbers

$\lambda(f,g)$ not well defined in $\mathbb{Z}[\pi_1 M]$!
but count in a double coset space

$\lambda(f,g) = 0 \iff$ all pts in $f \cup g$
paired by gen imm
coll of Wh discs

$M(f) = 0 \iff$ all pts in $f \cup f$
paired by gen imm
coll of Wh discs
The Kervaire–Milnor invariant
[for discs/spheres, due to FQ90 §10+strong]

\[\Sigma = \bigcup \Sigma_i \]

\[F : \Sigma \to M \text{ trivial alg int numbers, } \exists G : L \mathbb{S}^2 \to M \text{ alg dual} \]

\[\Rightarrow \text{ if } f \text{ are paired by gen. coll. of Wh discs } W \]

Let \(\Sigma^0 \subseteq \Sigma \) subsurface, \(F^0 = F|_{\Sigma^0} \) admits only twisted duals

i.e. euler number of the norm. bundles are odd.

Let \(W^0 = \{ W^{0,0} \} \subseteq W \) subset pairing into of \(F^{0} \).

Then \(\text{Rm}(F, W) := \sum_{Q} \left| \text{Int} W^{0,0} \cap F^{0} \right| \text{ mod } 2 \).
Question: When is $km(F, W)$ independent of W?

(spoiler: when F is b-characteristic)
Proof outline: Suppose \(\exists W \) s.t. \(\text{Rm}(F, W) = 0 \text{\&} \frac{76}{12} \)

Step 1: By neg. htpy, make \(F \) and \(G \) \textit{geom dual} (still immersed) \((\text{standard trick})\)

Step 2: Upgrade \(W \) and \(F \) by neg. htpy s.t. \(\{ \text{Int} + \text{We}\} \cap F = \emptyset \)

Step 3: Use (Whitney) disc embedding theorem to replace \(W \) by \(\{ \text{Ve}\} \) s.t. \(\{ \text{Int} + \text{Ve}\} \cap F = \emptyset \)
- \(\{ \text{Ve}\} \) flat, embedded, disjoint
- \(\exists \text{geom dual spheres} \{ \text{Ve}\} \) in \(M \setminus F \)

Step 4: Tube \(G \) into \(\{ \text{Ve}\} \) to get \(\overline{G} \), geom dual to \(F \), disjoint from \(\{ \text{Ve}\} \)

Step 5: Whitney move \(F \) over \(\{ \text{Ve}\} \) to get desired \(\overline{F} \).
Step 2: Upgrade \(W \) and \(F \) by neghtpy s.t. \(\{ \text{Int} \ W \} \cap F = \emptyset \)

- Local cusp moves in \(\text{Int} \ W \) changes framing by \(\pm 2 \).
Step 2: Upgrade \(W \) and \(F \) by neghtpy s.t. \(\{ \text{Int} + W e \} \cap F = \emptyset \)

Remaining problem: \(\text{W} \)h \(d\)is\(c\)s for \(F \) with a single "problem" each

\[R_m = 0 \implies \text{there are even such problem discs.} \]

- Do a finger move between \(f_2 \) and \(f_5 \)
Thanks!
The diagram shows a plumbing of $D^2 \times D^2$. It is marked as a smooth 4-manifold.

\[\gamma \text{ is good if } \]

\[\forall \psi \in \mathcal{G}(1.5)^g \to \Gamma \exists \text{ disc } \Delta \text{ s.t. } \psi(\text{disc}) = e \]

\[\text{null disc property} \]